Graph Transformations Vertical Shrink/Stretch

## Graph Transformations



























Graph Transformations  $x^a$ 

## a = n where n is a positive integer



 $x^n$  where n is even

 $x^n$  where n is odd

Martmouth

 $a = \frac{1}{n}$  where n is a positive integer

Graph Transformations  $r^{a}$ 





$$a = -1$$







## Practice Problems!

- Write  $h(x) = \frac{1}{x^2 + 6x + 9}$  as the composition of two nonidentity functions.
- **2** Write  $h(x) = \frac{1}{x^2 + 6x + 9}$  as the composition of three nonidentity functions.
- (a) Write  $k(x) = -4x^2 12x 4$  as the composition of two nonidentity functions.
- () Write  $q(x) = -2x^2 + 13$  as the composition of two nonidentity functions.



Graph Transformations Composition

## Solutions

- **1**  $h(x) = (f \circ g)(x)$  where  $f(x) = \frac{1}{x}$  and  $g(x) = x^2 + 6x + 9$ .
- $\textbf{0} \ h(x) = (f \circ a \circ b)(x) \text{ where } f(x) = \frac{1}{x}, \ a(x) = x^2, \text{ and } b(x) = x + 3.$
- **③** There are a couple of answers here. You could do  $k(x) = (f \circ g)(x)$ where f(x) = -4x and  $g(x) = x^2 + 3x + 1$ . You could also do  $k(x) = (a \circ b)(x)$  where  $a(x) = -x^2 + 5$  and b(x) = 2x + 3 (this one is pretty hard to find!).
- $q(x) = (b \circ a)(x)$  where b(x) = 2x + 3 and  $a(x) = -x^2 + 5$ . A way to think about this: you can't factor a 2 directly out of  $-2x^2 + 13$ , so can you rewrite the formula a little bit? This will give you  $-2x^2 + 10 + 3$ . Now you can factor a 2 out of part of it:  $2(-x^2 + 5) + 3$ .

