Graph Transformations

Dartmouth

Dartmouth

Dartmouth

Dartmouth

Dartmouth

$a=n$ where n is a positive integer

$a=\frac{1}{n}$ where n is a positive integer

$\sqrt[n]{x}$ where n is even

$\sqrt[n]{x}$ where n is odd

$$
a=-1
$$

Practice Problems!

(1) Write $h(x)=\frac{1}{x^{2}+6 x+9}$ as the composition of two nonidentity functions.
(2) Write $h(x)=\frac{1}{x^{2}+6 x+9}$ as the composition of three nonidentity functions.
(3) Write $k(x)=-4 x^{2}-12 x-4$ as the composition of two nonidentity functions.
(4) Write $q(x)=-2 x^{2}+13$ as the composition of two nonidentity functions.

Solutions

(1) $h(x)=(f \circ g)(x)$ where $f(x)=\frac{1}{x}$ and $g(x)=x^{2}+6 x+9$.
(2) $h(x)=(f \circ a \circ b)(x)$ where $f(x)=\frac{1}{x}, a(x)=x^{2}$, and $b(x)=x+3$.
(3) There are a couple of answers here. You could do $k(x)=(f \circ g)(x)$ where $f(x)=-4 x$ and $g(x)=x^{2}+3 x+1$. You could also do $k(x)=(a \circ b)(x)$ where $a(x)=-x^{2}+5$ and $b(x)=2 x+3$ (this one is pretty hard to find!).
(4) $q(x)=(b \circ a)(x)$ where $b(x)=2 x+3$ and $a(x)=-x^{2}+5$. A way to think about this: you can't factor a 2 directly out of $-2 x^{2}+13$, so can you rewrite the formula a little bit? This will give you $-2 x^{2}+10+3$. Now you can factor a 2 out of part of it: $2\left(-x^{2}+5\right)+3$.

